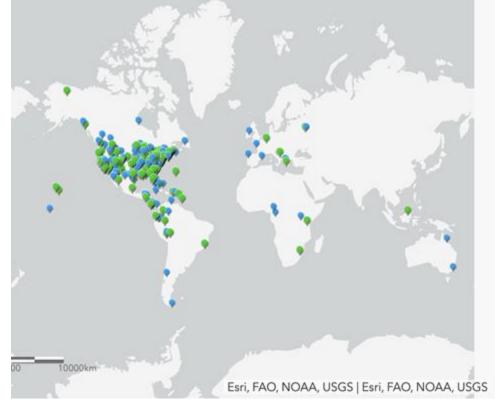


FIELD STATIONS: A NATURAL ENVIRONMENT FOR RESEARCH, EDUCATION, AND OUTREACH

LARA ROKETENETZ, Director, UA Field Station; Past President of OBFS CHELSEA MILLER, Assistant Professor, UA Department of Biology

WHAT IS A FIELD STATION?

- Any establishment that calls itself a field station and supports scientists conducting research on or near its premises (Struminger et al, 2018).
- Missions also typically include education and public engagement



https://www.obfs.org/

 Mission: Help member stations increase their effectiveness in supporting critical research, education, and outreach programs. We pursue this goal in a manner that maximizes diversity, inclusiveness, sustainability, and transparency.

Importance of Field Stations

Biological Field Stations: Research Legacies and Sites for Serendipity

Biological field stations are distributed throughout North America, capturing much of the ecological variability present at the continental scale and encompassing many unique habitats. In addition to their role in supporting research and education, field stations offer legacies of data, specimens, and accumulated knowledge. Such legacies often provide the only framework for documenting and understanding the nature and pace of ecosystem, regional, and global changes in environmental conditions; ecological processes; and biodiversity. Because of these legacies and because they serve as gathering places for a rich diversity of highly creative and motivated scientists, students, and citizens, biological field stations are frequently where serendipitous scientific discoveries take place. The inclusion of biological field stations in environmental observatories and research networks ensures that these places will continue to foster future serendipitous scientific discoveries.

Keywords: biological field stations, long-term research, research legacies, serendipity, socially relevant research

WILLIAMK. MICHENER, KEITH L. BILDSTEIN, ARTHUR McKEE, ROBERT R. PARMENTER, WILLIAM W. HARGROVE, DEEDRA McCLEARN. AND MARK STROMBERG

Current Issue

First release papers

Archive

HOME > SCIENCE > VOL. 373, NO. 6551 > SAVE EARTH'S GLOBAL OBSERVATORIES

Save Earth's global observatories

GENE E. LIKENS AND DAVID L. WAGNER Authors Info & Affiliations

SCIENCE + 9 Jul 2021 + Vol 373, Issue 6551 + p. 135 + DOI: 10.1126/science.abk2615

Networks, Centers, Observatories, and Field Stations 🗈 Open Access 🔞 🕩

The Organization of Biological Field Stations at Fifty

Stacy A. McNulty, David White, Mary Hufty, Paul Foster

First published: 29 September 2017 | https://doi.org/10.1002/bes2.1349 | Citations: 4

Biological Field Stations: A Global Infrastructure for Research, Education, and Public Engagement

LAURA TYDECKS, VANESSA BREMERICH, ILONA JENTSCHKE, GENE E. LIKENS, AND KLEMENT TOCKNER

Biological field stations (BFS) constitute a global network for long-term environmental monitoring and research, education, and public information. On the basis of a comprehensive inventory, we identified 1268 contemporary BFS, located in 120 countries. BFS occur in all biomes and cover terrestrial, freshwater, and marine systems, with the majority situated in protected areas. We emphasize the pivotal role that BFS constitute as a strategic infrastructure of global relevance for environmental research and monitoring and discuss their future development.

Keywords: global change, biodiversity, environmental research, nature conservation, sustainability

Climate Research at FSMLs

JOURNAL ARTICLE

The Activities and Importance of International Field Stations Get access >

Richard L. Wyman, Eugene Wallensky, Mark Baine

BioScience, Volume 59, Issue 7, July 2009, Pages 584–592,

https://doi.org/10.1525/bio.2009.59.7.9

Published: 01 July 2009

CURRICULUM AND INSTRUCTION ON CLIMATE LITERACY

Using Rich Context and Data Exploration to Improve Engagement with Climate Data and Data Literacy: Bringing a Field Station into the College

Classroom

Amy L. Ellwein, Laurel M. Hartley, Sam Donovan & Ian Billick

Pages 578-586 | Received 13 May 2014, Accepted 10 Sep 2014, Published online: 14 Jun 2018

66 Cite this article ☐ https://doi.org/10.5408/13-034

Chapter

Field Stations for a Future Climate

Architectures of Environmental Care

By Daniel Jacobs, Brittany Utting

Book Architectures of Care

Edition 1st Edition First Published 2023 Routledge Imprint Pages 21

1 January 2016

The University of Kansas Field Station: A Platform for Studying Ecological and **Hydrological Aspects of Climate Change**

W. Dean Kettle

Author Affiliations +

Transactions of the Kansas Academy of Science, 119(1):12-20 (2016). https://doi.org/10.1660/062.119.0104

Climate Research at LTERs

JOURNAL ARTICLE

Past, Present, and Future Roles of Long-Term Experiments in the LTER Network Getaccess >

Alan K. Knapp, Melinda D. Smith, Sarah E. Hobbie, Scott L. Collins, Timothy J. Fahey, Gretchen J. A. Hansen, Douglas A. Landis, Kimberly J. La Pierre, Jerry M. Melillo, Timothy R. Seastedt ... Show more

BioScience, Volume 62, Issue 4, April 2012, Pages 377–389, https://doi.org/10.1525/bio.2012.62.4.9

Published: 01 April 2012

JOURNAL ARTICLE

Cross-Site Comparisons of Dryland Ecosystem Response to Climate Change in the US Long-Term Ecological Research Network 8

Amy R Hudson Debra P C Peters, John M Blair, Daniel L Childers, Peter T Doran, Kerrie Geil, Michael Gooseff, Katherine L Gross, Nick M Haddad, Melissa A Pastore ... Show more

BioScience, Volume 72, Issue 9, September 2022, Pages 889-907,

JOURNAL ARTICLE

Responses of Coastal Ecosystems to Climate Change: Insights from Long-Term Ecological Research @

Daniel C Reed ➡, Russell J Schmitt, Adrian B Burd ➡, Deron E Burkepile,
John S Kominoski ➡, Karen J McGlathery ➡, Robert J Miller, James T Morris ➡,
Julie C Zinnert ➡

BioScience, Volume 72, Issue 9, September 2022, Pages 871–888, https://doi.org/10.1093/biosci/biac006

Published: 16 August 2022

JOURNAL ARTICLE

Climate Change and Long-Term Ecological Research

Scott L Collins

BioScience, Volume 72, Issue 9, September 2022, Page 803, https://doi.org/10.1093/biosci/biac076

Published: 29 August 2022

OBFS Programs

https://obfs.org/join-obfs/

- List-serv
- Station Exchange Program
 - International Groupings
- Congressional Visit Days
- Mini-grants
- Awards/Recognition
- Annual Conference

- https://www.obfs.org/join-obfs/listserv/
- https://obfs.org/join-obfs/
- https://www.obfs.org/field-stations/stationexchange/
- https://www.obfs.org/field-stations/art/
- https://obfs.org/membership-committee/

WOMEN OF THE WILD

Challenging Gender Disparities in Field Stations and Marine Laboratories

EDITED BY VICTORIA M. MCDERMOTT, JENNIFER M. GEE, AND AMY R. MAY

Introduction to Field Stations and Marine Laboratories by Victoria McDermott, Jennifer Gee, and Amy R. May

Part I: Setting the Stage of FSMLs

Chapter 1: Defining the Role and Value of FSMLs by Victoria McDermott, Jennifer Gee, and Amy R. May

Chapter 2: The Isthmus by Sylvia Torti

Part II: Experiences in the Field

Chapter 3: "Brush your hair, apply for every grant you can, get laid as often as possible": Women's Muted Experiences Conducting Scientific Research in the Tropics by Victoria McDermott

Chapter 4: Make the Approach and Get the Data: Challenges, Teamwork, and Cultures of Support for Women Who Are Scientists and Parents at Field Stations and Marine Labs by Diane Debinski

Chapter 5: Experiences of a Female Leader at Field Stations and Marine Labs by Sarah D. Oktay

Chapter 6: From the Standpoint of Women FSML Directors: Communication, Leadership, and the Impact of Gender Norms by Victoria McDermott and Amy R. May

Chapter 7: Identifying Factors that Contribute to Positive and Negative Student Experiences at Field-Based Institutions by Danielle M. Becker, Jessica E. Griffin, and Cassandra M. L. Miller

Chapter 8: The Gift Relationship: How Mentoring Results in Success for Women in Field Station Leadership Roles by Sarah D. Oktay and Brian D. Kloeppel

Chapter 9: Are Field Stations and Nature Centers Gendered Work Spaces? by Lara D. Roketenetz and Gary M. Holliday

Chapter 10: Women's Perspective on Building International Community-Field Station Partnerships by Rhonda Struminger, Gabriela Maria Vázquez Adame, and Yamila Hussein-Shannan

Chapter 11: A Long (Community) Engagement: From Journalism to Field Stations by Lisa Busch

Part III: Recommendations for FSMLs

Chapter 12: Recommendations for Developing More Diverse, Equitable, Accessible, and Inclusive FSMLs by Amy R. May, Victoria McDermott, and Jennifer Gee

© 2022

Integrative &Comparative Biology

Volume 63 Number 1 July 2023 academic.oup.com/licb

S9 ENVISIONING A DIVERSE, INCLUSIVE & SAFE FUTURE FOR FIELD BIOLOGY

Beyond A Vision for The Future: Tangible Steps To Engage Diverse Participants in Inclusive Field Experiences

■

Robin M Verble and others

Integrative and Comparative Biology, Volume 63, Issue 1, July 2023, Pages 59-65, https://doi.org/10.1093/icb/icad063

Abstract ▼ View article

Critically Assessing Undergraduate Field Experiences: Understanding Conceptualizations and Opportunities for Building Inclusive Programs •

Nia Morales and Darryl Reano

Integrative and Comparative Biology, Volume 63, Issue 1, July 2023, Pages 66-78, https://doi.org/10.1093/icb/icad008

Abstract ▼ View article

Fieldwork and LGBTQ+ Identities: Queering the Outdoors @

Maryam Kamran and Kelsey Jennings

Integrative and Comparative Biology, Volume 63, Issue 1, July 2023, Pages 79-85, https://doi.org/10.1093/icb/icad038

Abstract ▼ View article

EDITOR'S CHOICE

Centering Transgender and Gender Non-Conforming Experience, Access, & Safety in Ecological Fieldwork ●

Shayle B Matsuda

Integrative and Comparative Biology, Volume 63, Issue 1, July 2023, Pages 86–97, https://doi.org/10.1093/icb/icad017

Abstract ▼ View article

Equipment Repositories for Accessibility: A Model for Improving Access in Field Science

Amy-Charlotte Devitz

Integrative and Comparative Biology, Volume 63, Issue 1, July 2023, Pages 98-107, https://doi.org/10.1093/icb/icad024

Abstract ▼ View article

EDITOR'S CHOICE

Remaining safe conducting Field work While Black (FWB), and Tips for PIs, Universities, and Employers of Black Individuals • Alex Troutman

Integrative and Comparative Biology, Volume 63, Issue 1, July 2023, Pages 108-113, https://doi.org/10.1093/icb/icad062

Abstract ▼ View article

Deficits in Accessibility across Field Research Stations for Scientists with Disabilities and/or Chronic Illness, and Proposed Solutions

Elizabeth N Rudzki and Kevin D Kohl

Integrative and Comparative Biology, Volume 63, Issue 1, July 2023, Pages 114–127, https://doi.org/10.1093/icb/icad019

Abstract ▼ View article Supplementary data

Knowing Your Field Community: Elevating the Human Dimension in Ecological Research and Teaching •

Gillian Bowser and Carmen R Cid

Integrative and Comparative Biology, Volume 63, Issue 1, July 2023, Pages 128-135, https://doi.org/10.1093/icb/icad036

Abstract ▼ View article

IDEA+ and OBFS: Using Transdisciplinary Strategies to Create More Inclusive Spaces •

Victoria McDermott and others

Integrative and Comparative Biology, Volume 63, Issue 1, July 2023, Pages 136-144, https://doi.org/10.1093/icb/icad025

Abstract ▼ View article

Best Practices to Promote Field Science Safety

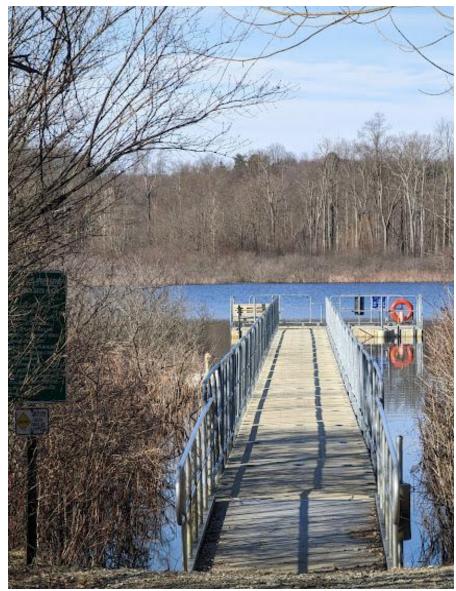
Kristen Yarincik and others

Integrative and Comparative Biology, Volume 63, Issue 1, July 2023, Pages 145-161, https://doi.org/10.1093/icb/icad014

Abstract ▼ View article

The University of Akron Field Station at Bath Nature Preserve is a living laboratory for the advancement of knowledge through ecological research, education, and stewardship of the natural world.

- Provide a center for long-term environmental research emphasizing habitat restoration and ecology
- Interact with the local community in promoting environmental awareness
- Support the education programs of primarily urban universities and local schools (K-12)



https://www.facebook.com/ UAFieldStation

https://www.instagram.com/uakron_fieldstation/

Bath Nature Preserve

Panzner Wetlands Wildlife Preserve

Undergraduate Education

Environmental Education

Environmental Ethics

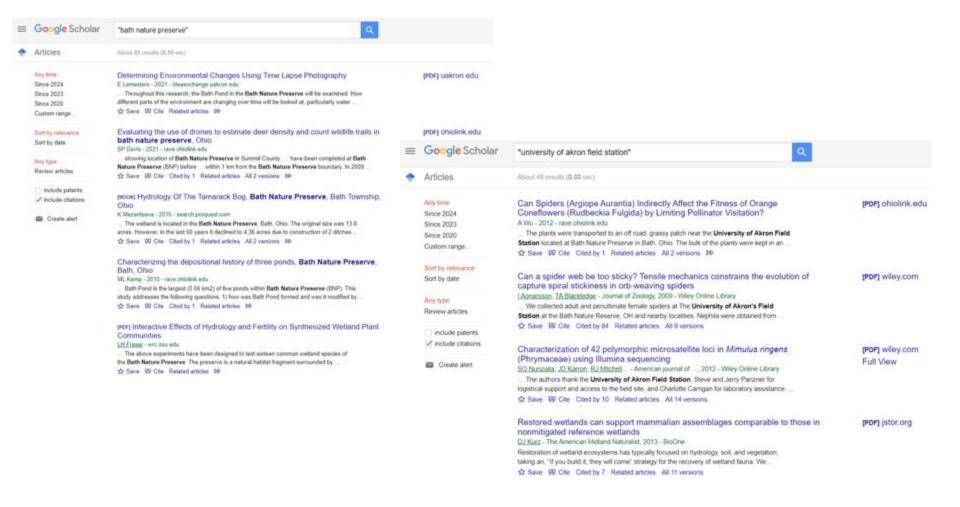
Vertebrate Zoology

Wetland Ecology

Entomology

Restoration Ecology

Field Ecology



FIELD COURSES TO MAINE('23/'25) AND VIRGINIA('24)

Research

Opinion

Advertise

Obituaries

eNewspaper

LOCAL

University of Akron students on the trail of Steiner Woods salamanders

Staff Writer Akron Beacon Journal

April 10, 2014, 11:00 a.m. ET

BATH TWP.: Sometimes the simplest solution can help in a monumental task.

For more than 15 years now, ordinary household buckets have been the key to an extensive research project — the study of the spotted salamander in the Windhover Pond area of Steiner Woods in Bath Township.

MOLECULAR ECOLOGY

Population structure of spotted salamanders (Ambystoma

J. L. PURRENHAGE, P. H. NIEWIAROWSKI, F.B.-G. MOORE

maculatum) in a fragmented landscape

First published: 14 January 2009 | https://doi.org/10.1111/j.1365-294X.2008.04024.x | Citations: 65

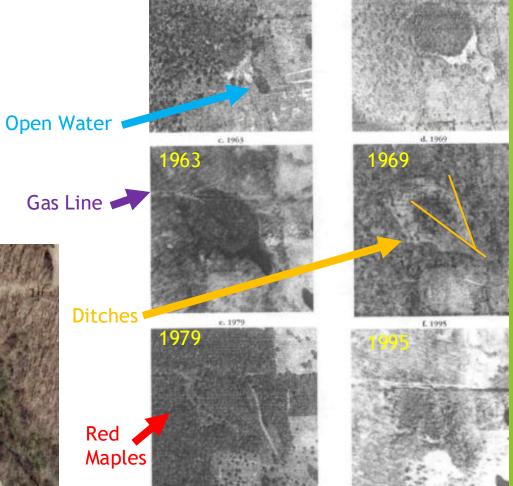
Jennifer L. Purrenhage, Fax: +1 513-529-6900; E-mail: purrenjl@muohio.edu

Terrestrial Habitat Use by Radio-Implanted Spotted Salamanders (Ambystoma maculatum)

Nussbaum, Ashley Lynn

http://rave.ohiolink.edu/etdc/view?acc_num=akron1134688691

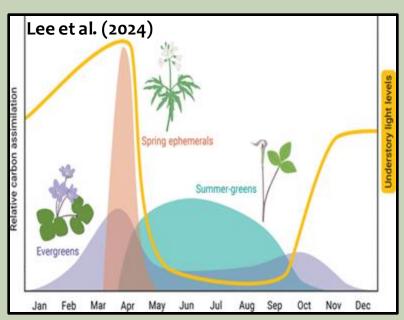
Randy Mitchell Ira Sasowsky University of Akron

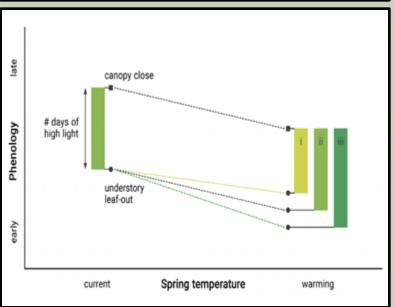

Jean Marie Hartman Rutgers University

Bath Nature Preserve's Tamarack "Bog" restoration

Bog evaluation by UA in 2000

- ➤ Since 1936, wetland area shrank from 13 to 5 acres
- Bath Township began implementing a restoration plan in 2012-2013


The Ecological Lens


How do plants and insects
(organisms that are central to
ecosystem functioning)
respond to rapid and
sometimes unpredictable
environmental shifts, such as
those caused by climate
change and urbanization?

- Timing and duration of plant life-cycle events (emergence, flowering, fruiting, senescence) drive ecosystem structure and species interactions
- Spring ephemerals:
 - Spring wildflowers
 - Forest understory
 - ❖ Above-ground lifecycle: narrow window between last frost and canopy closure → max light and soil resources
 - High C assimilation rate over a short time-period:
 - High spring irradiance before canopy closure = 39–100% of species-level annual carbon assimilation (Heberling et al., 2019)

- If flowering/fruiting shifts in response to climate change but canopy leaf-out doesn't, plants may lose access to light, mutualists, or dispersers, reducing fitness
 - Spring ephemerals are particularly vulnerable to climate-induced phenological mismatch (Heberling et al., 2019)

Short-term anomalies matter:

- Outsized effects on developmental timing
- Understanding responses to anomalous weather helps reveal the plasticity and sensitivity of plants to rapid fluctuations, not just gradual change

Holden Arboretum

Dr. Katie Stuble, Community Ecologist at the Holden Arboretum

Do warmer than average days result in truncated phenophase durations for spring flowering herbs?

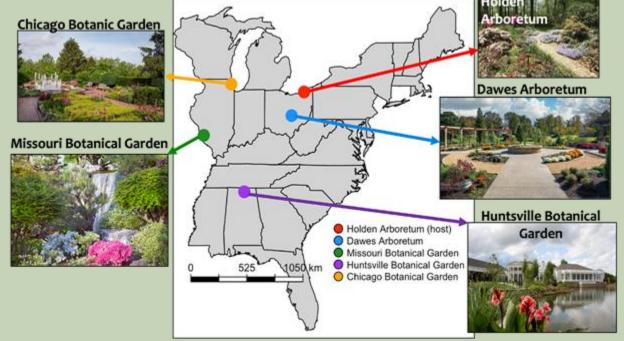
 H_1 : Higher deviance scores for mean daily temperature will be related to truncated durations of spring wildflower phenophases.


Community Science at Public Gardens

Emily Lewis attempting to identify an early spring flower using iNaturalist (credit: Maris Hollowell, 2023).

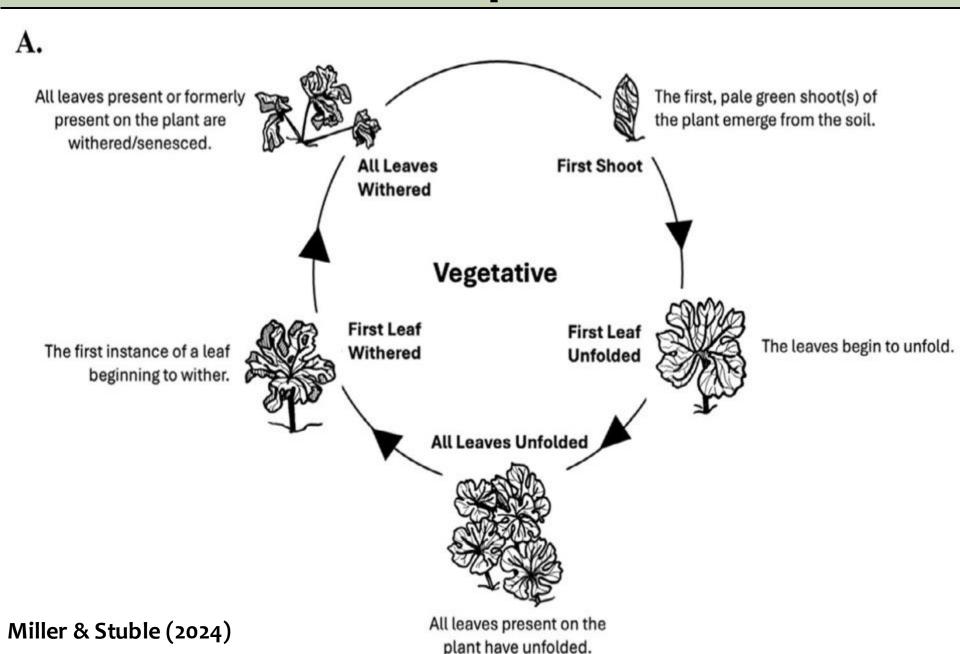
Katie Stuble training a group of volunteers at HFG (2023).

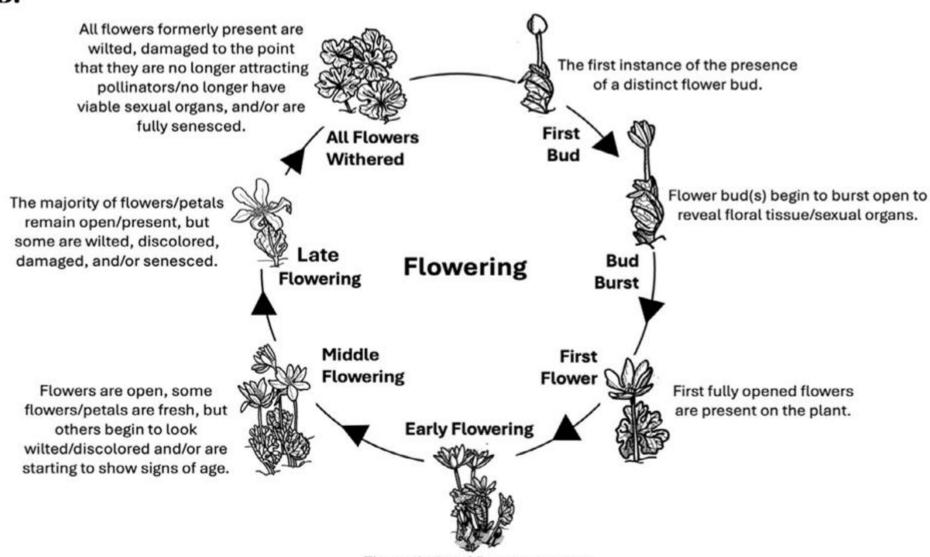
Holden Arboretum


(iNaturalist, 2024; Budburst, 2024)

(Fuccillo et al., 2015; Gallinat et al., 2021)

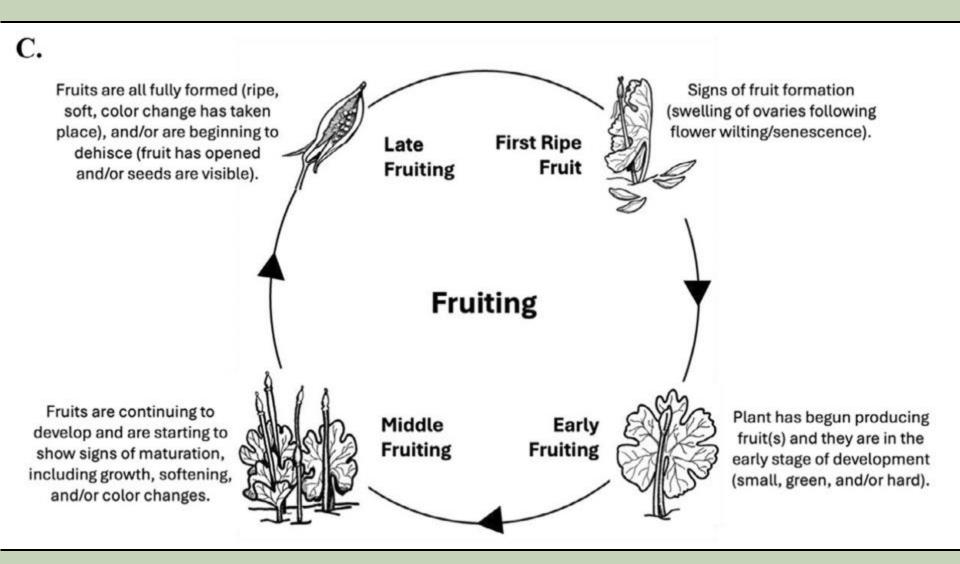
Do warmer than average days result in truncated phenophase


durations for spring flowering herbs?


- 14 plant species
- 5 botanical gardens
- 4 states (OH, IL, MO, AL)
 - o 198 plants
 - Monitored Mar–Oct 2023
- >30 community science volunteers
- 2x/week observations
- 16 phenophases
 (flowering, fruiting,
 vegetative) tracked with a
 standardized, publicly available app (Budburst)
 - 14,256 observation events
 - ~72 observations/ plant

Phenophases

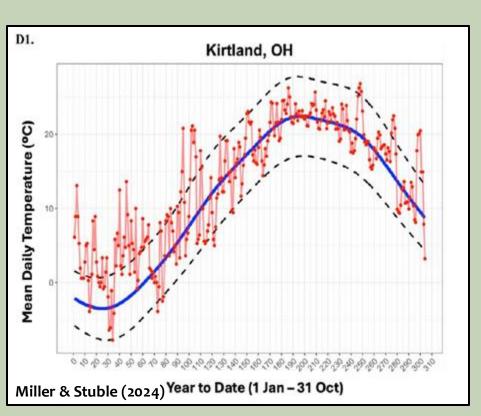
Phenophases

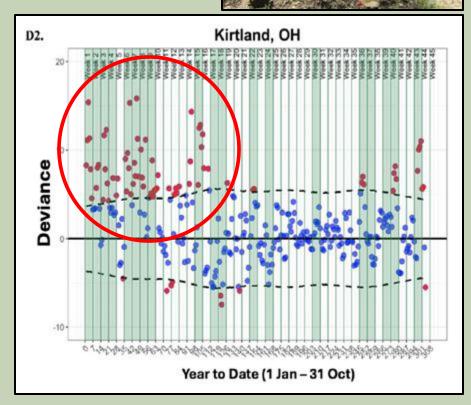

В.

Miller & Stuble (2024)

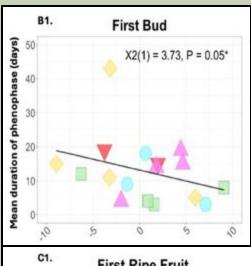
The majority of flowers are open and fresh, with no or very limited signs of wilting/discoloration.

Phenophases

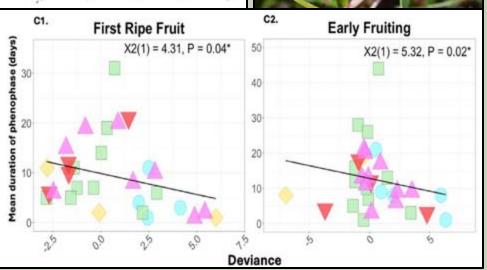



Do warmer than average days result in truncated phenophase

durations for spring flowering herbs?


 Average of ~19 weeks per site with temps significantly above/below 30-yr normals

Most deviations were warmer, rather than cooler

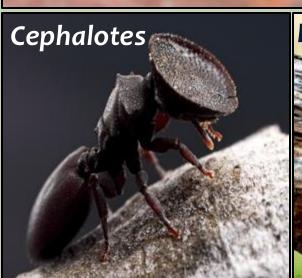


Do warmer than average days result in truncated phenophase durations for spring flowering herbs? – Yes.

Miller & Stuble (2024)

Key result:

- Warmer-than-average days → shorter durations of early reproductive phenophases ("First Bud," "First Ripe Fruit," "Early Fruiting")
 - Also, significant differences among species in phenophase lengths, but no single pattern
- Shortened phenophases may reduce reproductive success, alter plant pollinator timing, and ripple through ecosystems


More questions...

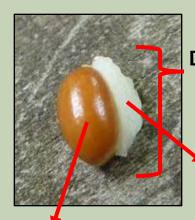
 Intended as a "de facto common garden" to disentangle phenotypic plasticity vs. local adaptation in phenology, but limited by garden records

Why ants?

- Fascinating organisms; powerful ecological players
- Ecosystem engineers (nutrient cycling, soil turnover, seed dispersal)
- Sensitive to microclimate → sentinels of environmental change
 - Present on every continent
 - Have enormous global biomass
 - Unique eusocial lifestyles
 - Engage in important interactions with many other species

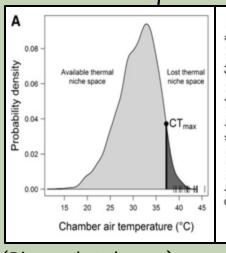
Why ants?

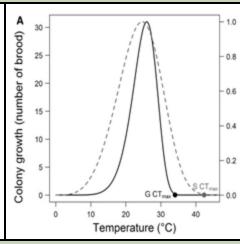
- Long-term personal connection:
 - Ant seed dispersal shapes plant communities
 - myrmecochory for rare and common spring ephemeral plants in the genus Trillium
 - I found that rare


 Trilliums experienced significantly poorer quality seed dispersal by ants →
 - Likely due to ants' preference for the seeds of widespread species

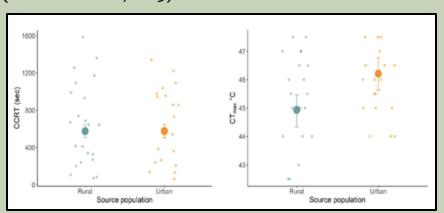
Seed

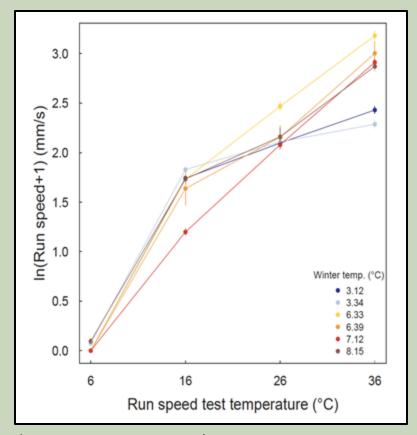
Adaptation affects ant responses to environmental change...


• Among species:


- Thermal tolerance predicts ant species abundance under warming, but fitness outcomes differ depending on metric (survival vs. colony growth)
- Ants like the acorn ant (Temnothorax curvispinosus) can survive higher temps than they can grow/reproduce at → Do populations persist via plastic responses, or evolve new tolerances?

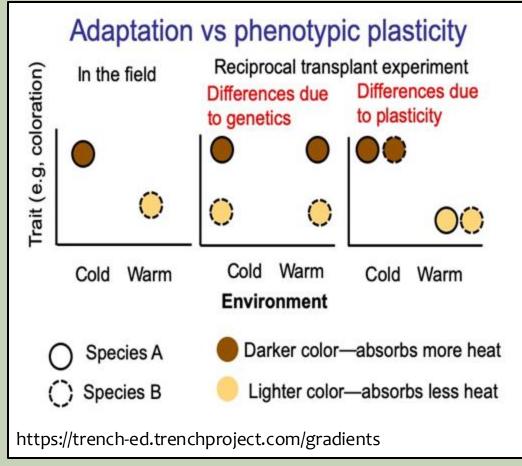
• And within species:


 Urban acorn ants show evolutionary increases in heat tolerance, but maintain comparable cold tolerance under overwintering conditions Acorn ant (Temnothorax curvispinosus


(Diamond et al., 2013)

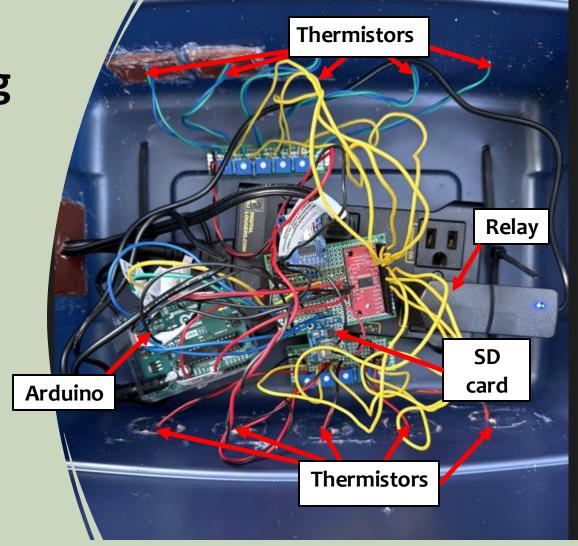
(Prileson et al., 2023)

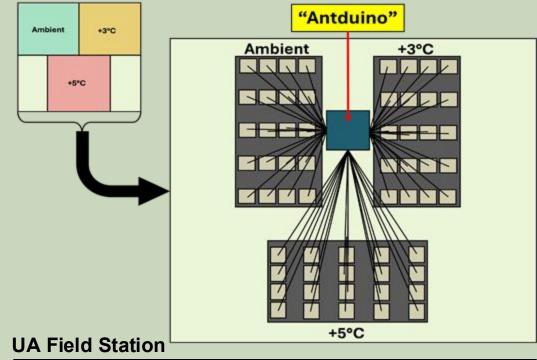
...and so does plasticity!


- Experimental winter warming primes ants for warmer spring activity ->
 - Ants acclimated to warmer winters ran faster at high temps (26–36 °C), showing strong phenotypic plasticity in performance

(MacLean et al., 2017)

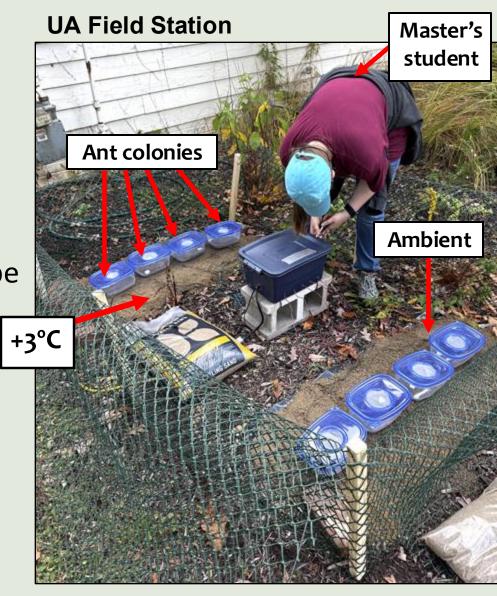
- Literature not only demonstrate that ants are adapting—
- Also highlights tension between plastic physiological shifts (shortterm, reversible) and local adaptation (genetic divergence between urban vs. rural populations)
- Understanding ant responses to climate change:
 - When and to what extent do species rely on phenotypic plasticity vs. local adaptation?
 - How does seasonal context (summer vs. winter) shifts that balance?



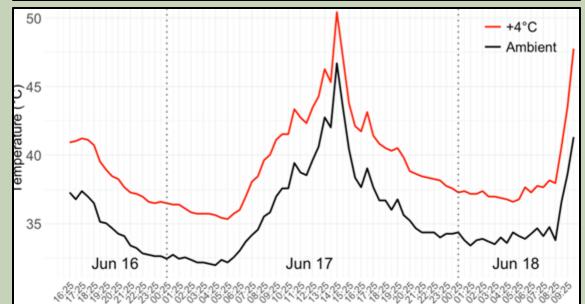


- How do urbanization + winter climate change shape ant overwintering survival and activity?
- 2. Is colony response driven by phenotypic plasticity or local adaptation?
- Focal taxa: acorn ants (*Temnothorax* curvispinosus), plus comparisons with other surface-nesting forest ant species, like those in genera *Aphaenogaster*, Lasius, and *Tapinoma*.
- Why acorn ants (and those that share life history)?
 - Above-ground nests in acorns = highly exposed to freeze—thaw and warming pulses

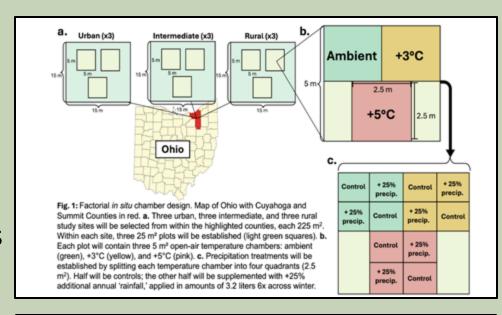
 Antduino chambers: custom-designed Arduino-based warming systems (+3 °C, +5 °C)



- Treatments: simulated winter warming via soilwarming open-air "chambers"
 - Arduino tracks the temperature of the ambient and heated mats using thermistors
 - Turns heat mat on/off to ensure heat mat stays +3°C warmer than ambient



- Reciprocal transplants: colonies with urban vs. rural origins will be deployed across urban, intermediate, rural sites (TBD)
- Data (to be) collected: colony survival, foraging activity, nest choice, phenology (entering dormancy, etc.), behavior
- Variables:
 - Ant species
 - Colony origin
 - Warming treatment



Where we are now:

- First chamber deployed at UA Field Station!
 - Rural
- Second chamber to be deployed at UA main campus
 - urban
- Pilot data collection underway

What's next:

- Deploy full set of warming chambers across 9 sites (urban → rural)
- Launch reciprocal transplant experiments with many colonies
- Collect multi-season and multiyear data on overwintering, survival, and phenology
- Integrate results with broader frameworks on urban climate adaptation and phenological plasticity

Overarching goal: predict resilience/vulnerability of forest ant communities under climate + urbanization pressures

Why it matters

- Climate change and other global change drivers are transforming ecological systems
- Studying responses across scales and taxa helps predict resilience
- Ants can provide insights into ecosystem functioning under global change
- Field stations and other nonacademic institutions can be key players in facilitating important climate change research at a low cost

Grant no. 2109482

 And critically, field stations enable us to train the next generation of scientists beyond the classroom

Fellowships

Innovation inspired by nature:

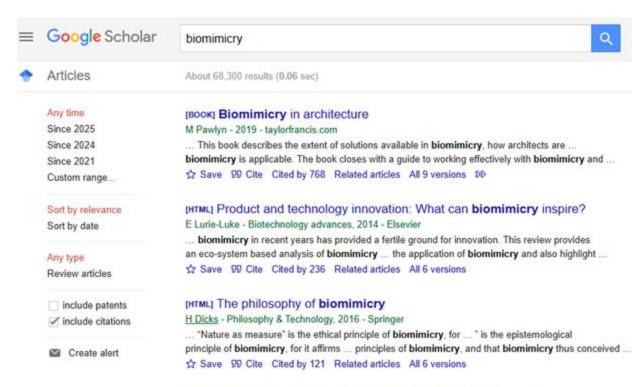
Linking science, engineering, business, art, and design at the Biomimicry Research and Innovation Center

WHAT IS BRIC?

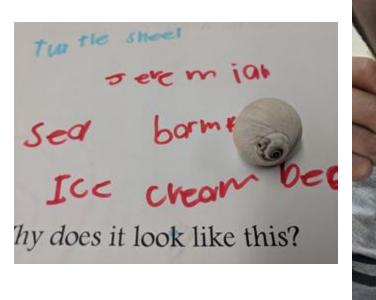
The University of Akron Biomimicry Research and Innovation Center (BRIC) is a center dedicated to the advancement of innovation inspired by nature. Together with our regional partners, we are building an internationally recognized center for biomimicry research, design, teaching and training.

The work of BRIC is to align the creative ideas of scientists, engineers, artists, and entrepreneurs to catalyze invention. By partnering our existing biomimetic research expertise with the Great Lakes Biomimicry (GLBio) business leaders, the BRIC paradigm tays the foundation for sustainable economic and educational innovation powered by nature-inspired technologies.

IN PARTNERSHIP WITH:

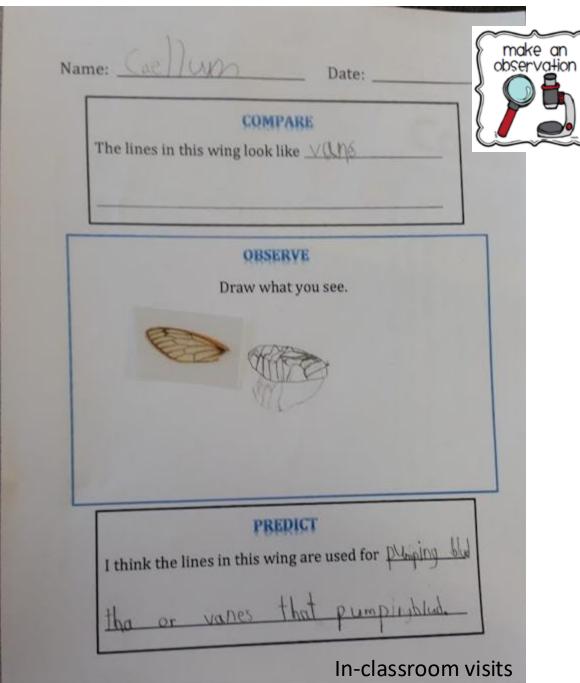


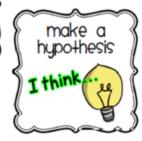
In-classroom visits

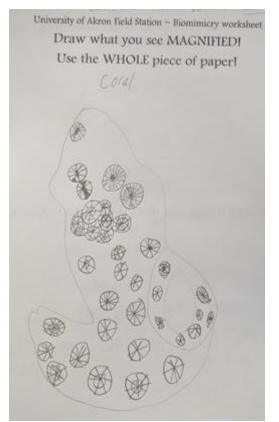


Biomimicry in textiles: past, present and potential. An overview

L Eadie, TK Ghosh - Journal of the royal society interface, 2011 - royalsocietypublishing.org


The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop ...





THE EQUALITY OF OPPORTUNITY PROJECT

HOME | NEWSROOM | ARTICLES

LOST EINSTEINS: THE US MAY HAVE MISSED OUT ON MILLIONS OF INVENTORS

WEALTHY CHILDREN ARE 10 TIMES MORE LIKELY TO BE

By Rebecca Linke | February 16, 2018

Graphics: Mimi Phan

WHY IT MATTERS

Innovation has slowed in the U.S., stymying economic growth. To get back on track, the U.S. needs more low-income children, women, and minorities to become inventors — but that won't be easy.

Who Becomes an Inventor in America? The Importance of Exposure to Innovation

Executive Summary

Alex Bell, Raj Chetty, Xavier Jaravel, Neviana Petkova, and John Van Reenen

Innovation is widely viewed as the engine of economic growth. As a result, many policies have been proposed to spur innovation, ranging from tax cuts to investments in STEM (science, technology, engineering, and math) education. Unfortunately, the effectiveness of such policies is unclear because we know relatively little about the factors that induce people to become inventors. Who are America's most successful inventors and what can we learn from their experiences in designing policies to stimulate innovation?

Science News

from research organizations

Diversity boosts innovation in US companies, study finds

Date: January 9, 2018

Source: North Carolina State University

Summary: A recent study finds that taking steps to foster diversity makes a company more

innovative, in terms of product innovations, patents created and citations on patents --

meaning the relevant innovations are also used to develop new technologies.

AWARD-WINNING PROGRAMS

Educator of the Year – Cleveland Museum of Natural History; Summit Soil and Water Conservation District; Akron Garden Club; Cuyahoga County Soil and Water Conservation District;

Human Diversity Award – OBFS

œ`

University of Akron Achievement Award – Diversity

=:

Buchtel College of Arts and Sciences - Dean's Above and Beyond Award

Buchtel College of Arts and Sciences - Community Outreach

University of Akron Achievement Award – Community Outreach

UA Annual Climate Symposium at UAFS

Contact information:

Lara Roketenetz

- Ldr11@uakron.edu
- 330-972-7502

Chelsea Miller

- cmiller3@uakron.edu
- 815-901-6801

