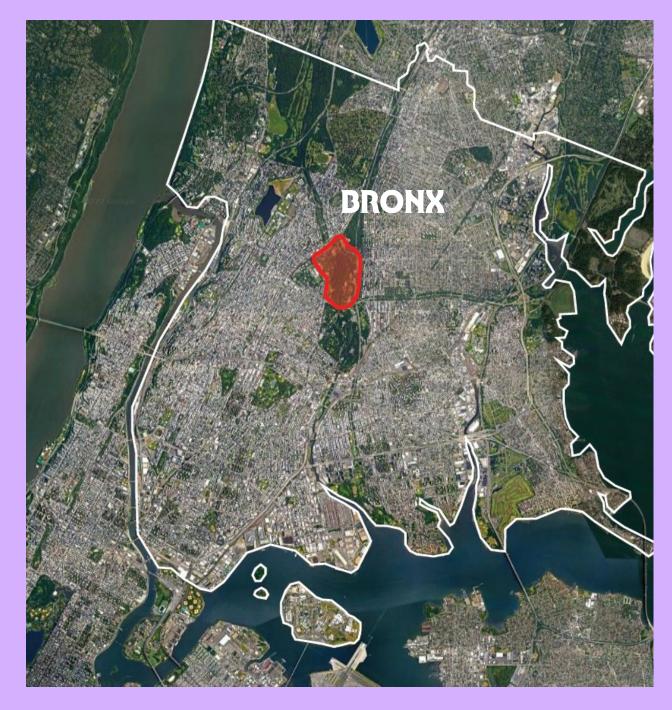
HYBG

WHO WE ARE

The New York Botanical Garden has been a connective hub among people, plants, and the planet since **1891**.

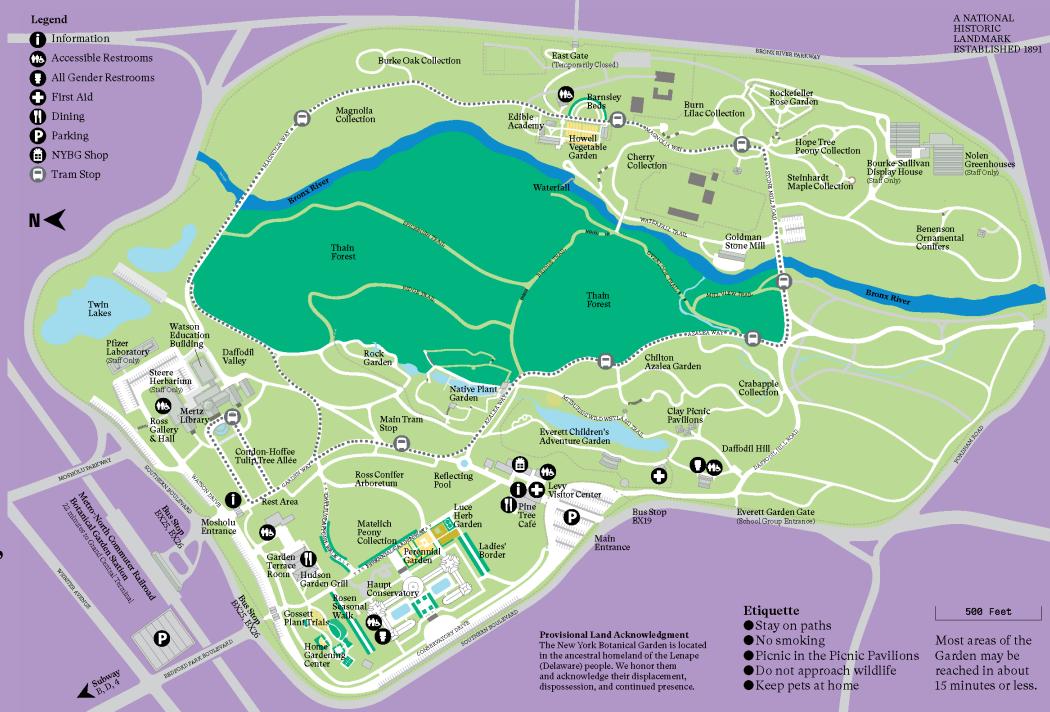

We're rooted in the cultural fabric of New York City, here in the heart of the Bronx—its greenest borough.

For more than 130 years, we've invited millions of visitors to make the Garden a part of their lives, exploring the **joy**, **beauty**, **and respite** of nature.

NYBG's **250** acres are home to renowned exhibitions, immersive botanical experiences, art and music, and events with some of the most influential figures in plant and fungal science, horticulture, and the humanities.

We're also stewards of globally significant research collections, from the **LuEsther T. Mertz Library collection** to the plant and fungal specimens in the William and Lynda Steere Herbarium, the largest such collection in the Western Hemisphere.

GARDEN MAP


250 Acres

National Historic Landmark Established 1891

Native Forest

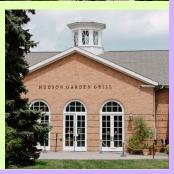
Bronx River

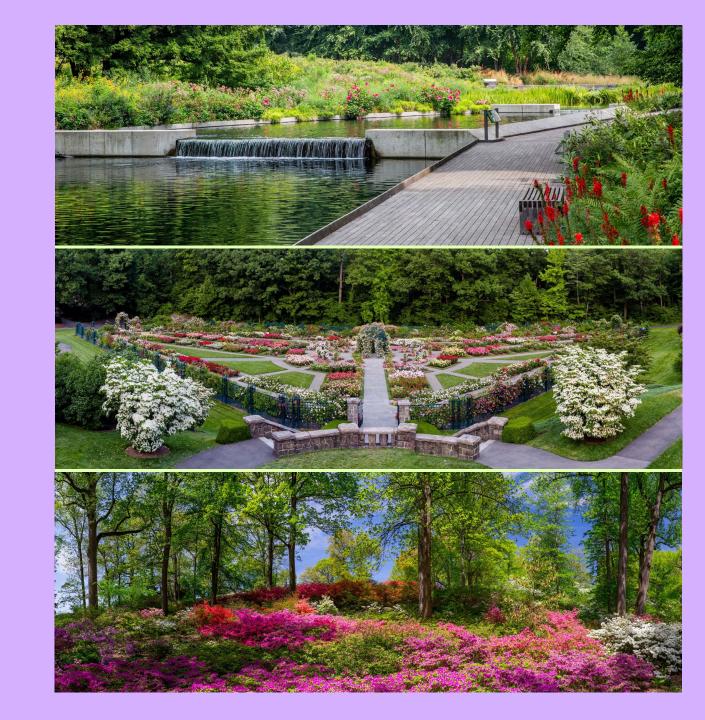
Lakes, Streams, & Wetlands

BUILDINGS

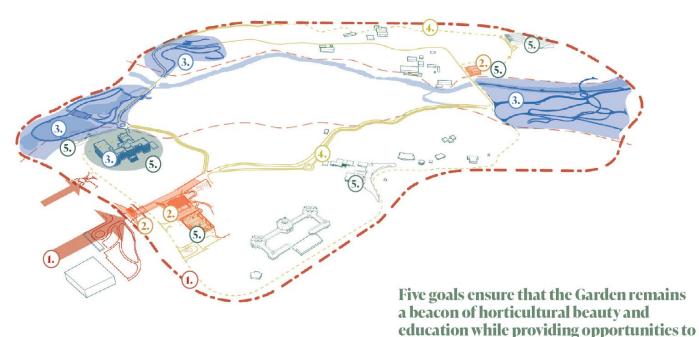
25+ Buildings & Structures (Built 1891 – 2018)

- Conservatory & Glasshouses
- Botanical Museum & Exhibition Galleries
- Botanical Public Library
- Herbarium: Largest in the Western Hemisphere
- Visitor Center
- Restaurants & Catering Venues
- Education Centers
- Laboratories
- BOH Facilities





GARDENS


- Native Plant Garden
- Rose Garden
- Azalea Garden
- Lilacs Collection
- Peony Collection
- Maple Collection
- Oak Collection
- Magnolia Collection
- Cherry Collection
- Home Gardening Center

& More

COMPREHENSIVE MASTER PLAN FOR 2050 Garden 20

Garden 2050 Goals – Welcoming, Vibrant, and Sustainable

Prepared By:

NYBG + OLIN

welcome, restore and reconnect.

GARDEN 2050 GOALS

1.

CHAPTER 1: NURTURE DISCOVERY AND COMMUNITY Welcome, Orient, and Guide

Visitors and enhance the relationships of collections, buildings and circulation to encourage self-direction.

Establish a cohesive identity

and a "sense of place" throughout the onsite experience.

2.

CHAPTER 2: EXPAND EXPERIENCE AND REVENUE POTENTIAL Provide improved amenities and access

to meet the current and projected needs of visitors and Garden constituents.

Facilitate new opportunities

for programs, exhibitions, education, and experiences.

3.)

CHAPTER 3:
REVEAL PROGRAMMATIC
EXCELLENCE

Showcase NYBG programs that are difficult to access - scientific inquiry and sustainable horticultural practices.

Highlight the ecological significance of our landscape and natural features.

Cultivate a more dynamic and energetic work and research environment.

4.

CHAPTER 4:
PRESERVE THE BEAUTY OF THE
GARDEN

Organize operational support

Services /areas/circulation/technology to minimize disruption to the visitor experience and the Garden's living collections.

Preserve open spaces

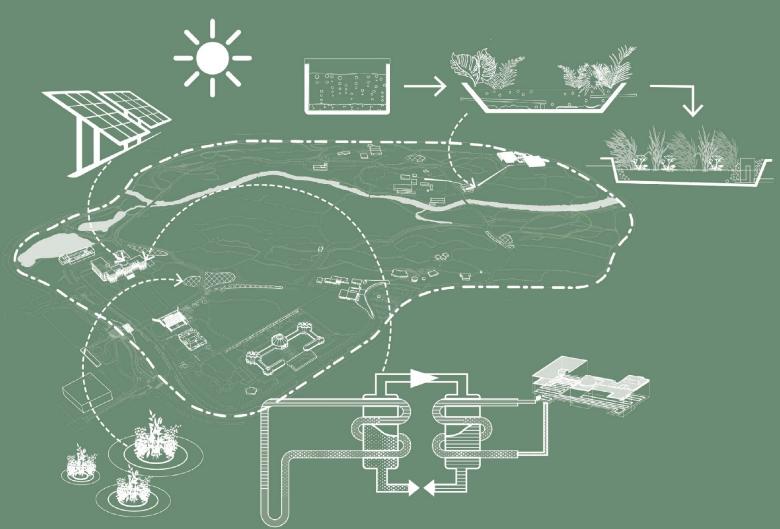
for the benefit of historic character of the Garden and native habitat.

(5.)

CHAPTER 5: STRENGTHEN CLIMATE RESILIENCE AND SUSTAINABILITY

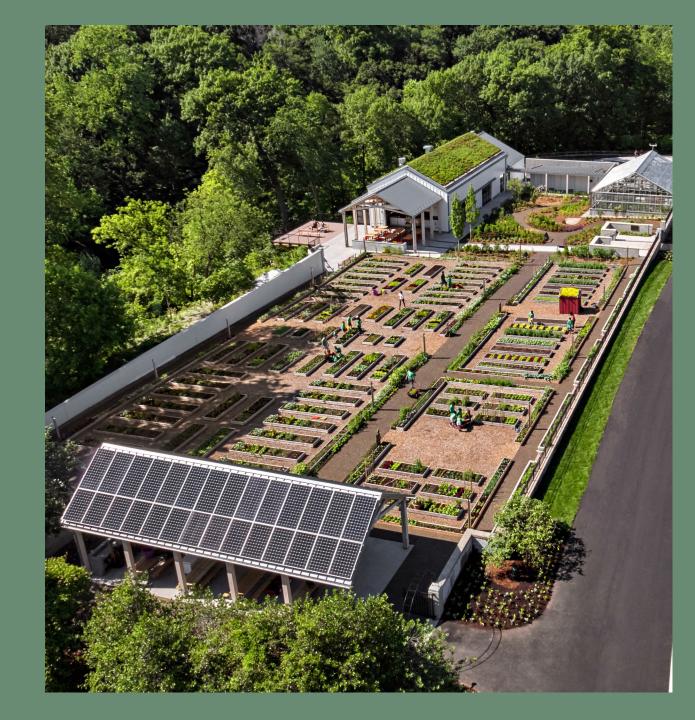
Strengthen the resiliency and sustainability of the Garden

while minimizing the environmental impact of building systems, infrastructure, equipment and vehicles.


Strengthen the sustainability of the Garden by reducing resource use across operational areas

STRENGTHEN CLIMATE RESILIENCE AND SUSTAINABILITY

Strengthen the resiliency of the Garden while minimizing the environmental impact of building systems, infrastructure, equipment and vehicles.


Strengthen the sustainability of the Garden by reducing resource use across operational areas.

OPERATIONAL CARBON AND ELECTRIFICATION

- Operational Carbon
 - Heating, Ventilation & Cooling
 - Lighting
 - Lawn Mowing
 - Internal Transportation of People and Goods
- NYC has committed to reducing its greenhouse gas (GHG) emissions, relative to the baseline of 2005 levels, 40% by 2030 and 80% by 2050
 - Local Law 97 of 2019

EXISTING OPERATIONAL ENERGY DEMANDS

- NYBG is prioritizing efforts to minimize operational energy demands. Measures implemented between 2005 to 2021 include:
 - Installation of Building Management System (BMS)
 - Conversion of building equipment and systems to replace heavy fossil fuel dependent systems
 - Extensive replacement of light fixtures with LED
 - Installation of variable frequency drives (VFDs) and smart valves in building level motors and pumps
 - Replacement of older inefficient building HVAC systems by more efficient systems
 - New structures utilized more energy efficient technologies, such as geothermal and solar photovoltaic systems

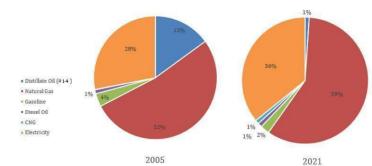
		Energy Dema	and (kWh)	Change	Domarko			
Energy Use Category	Source	2005	2021	2005	Remarks			
Stationary fuel for buildings	Distillate Oil (#1-4)	5,068,074	40,402	-99.20%	Efforts to transition from fossil fuel-based systems to natural gas have reduced oil usage.			
and site operations	Natural Gas	17,740,406	14,939,829	-15.79%	Reduction is due to several building system efficiency measures.			
	Gasoline	1,165,649	584,565	-49.85%	NYBG's efforts to transition from fossil fuel			
First Control of the American April 19	Diesel Oil	356,240	279,863	-21.44%	driven vehicles to CNG powered ones, have reduced its gasoline and diesel consumption.			
Fuel for on-site transportation	CNG	27,549	252,919	+818.09%	The increase in CNG usage is due to replacement of gasoline and diesel oil by natural gas, as the primary vehicle fuel.			
Purchased energy for buildings and site operations	Electricity	9,490,063	9,114,186	-3.96%	Implementation of several energy efficiency measures have resulted in this reduction.			
TOTAL OPERATIONAL ENERGY DEMAND		33,847,982	25,440,708	-24.84%				

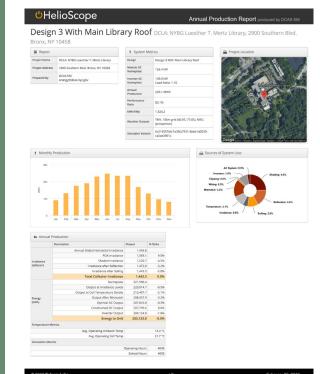
Note:

The reported units for several of the above energy sources have been converted to kWh equivalents for comparison.

While Local Law 97 considers only building-related energy use, this figure presents an overall operational energy use profile that includes other drivers of energy demand (exinternal transportation, lawn mowing, etc).

Figure 279. OPERATIONAL ENERGY PROFILE Source: A10. Year: 2023



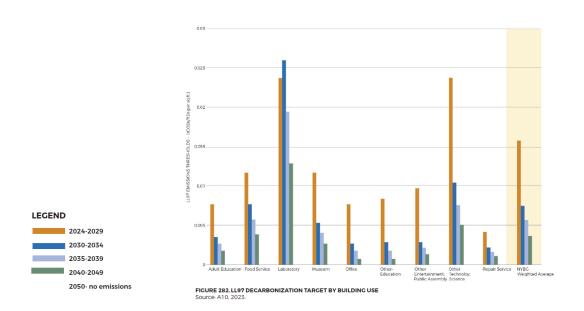

Figure 280. COMPARISON OF ENERGY SOURCES Source: A10, Year: 2023

EXISTING ELECTRIFICATION AND OFFSETS

- Since 2019, NYBG has made efforts to offset some of its energy through purchase of renewable energy certificates (RECs)
- Solar renewable energy feasibility studies have been performed in collaboration with NYC Department of Administrative Services (DCAS)
 - Cumulatively, the 6 locations studied have a potential to offset 11% of the 2021 electricity demand
- Challenges:
 - Funding
 - Structural limitations
 - Existing roofing conditions

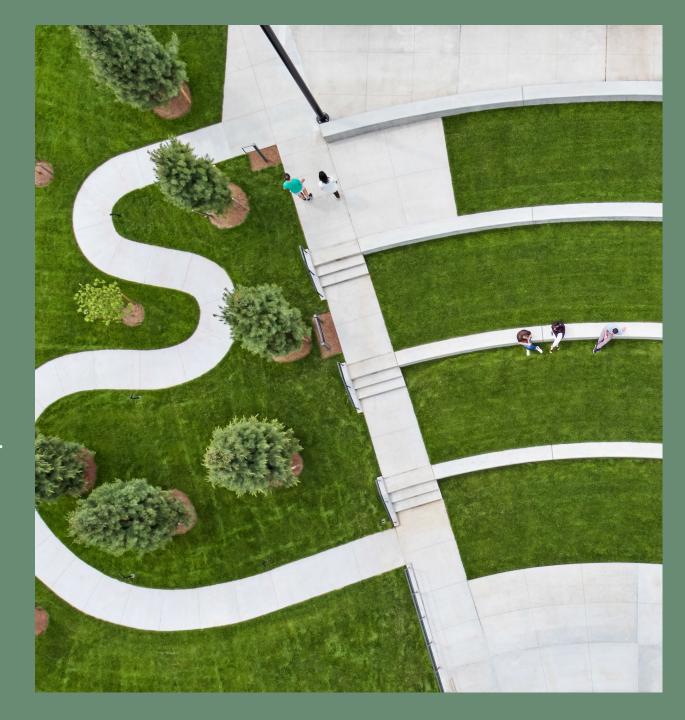
Location	Generation Potential (kWh)	Ability to offset 2021 electricity demand
Mertz Library roof	203,133	2.23%
Operations Garage roof	26,484	0.29%
Bedford Garage roof	339,841	3.73%
Butler Building roof	119,080	1.31%
EA Haupt Conservatory Canopy	254,762	2.80%
Solar Boulder Canopy	39,048	0.43%
TOTAL	982,348	10.78%

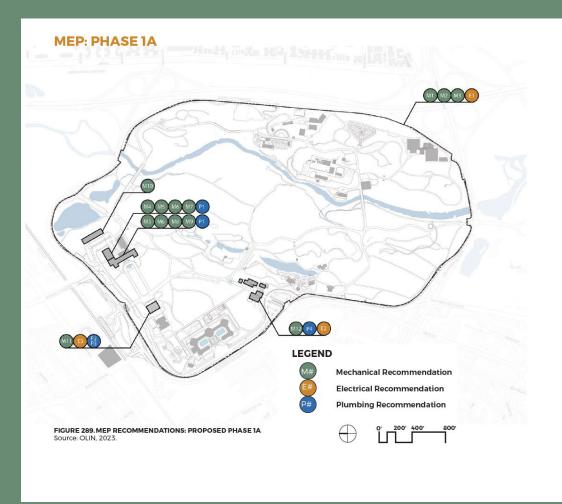
Figure 278. SUMMARY OF ANNUAL SOLAR ENERGY GENERATION POTENTIAL REPORT Source: A10, 2023.



© 2019 Folsom Labs 3/3 February 22, 2019

PROPOSED DECARBONIZATION ROADMAP

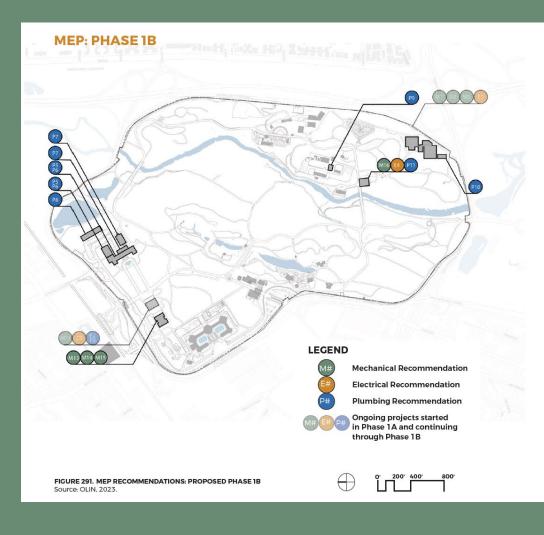

- Local Law 97 of 2019 is a set of laws designed to enable NYC to achieve its goal of carbon neutrality.
- The Garden, as is, is currently within the annual Carbon Emissions Intensity threshold and is expected to be within the limits until 2029.
- Based on the proposed energy conservation measures and their implementation timelines, the projected annual emissions between 2022 and 2049 are observed to be within the threshold.
- NYBG must pursue additional PV infrastructure and efficiency measures to further lower emissions and achieve NYC 2050 goals.



RECOMMENDATIONS

- For all new construction and major renovation projects:
 - Achieve an all-electric mechanical system for new construction and net zero or better operations by using building envelope analysis, GSHPs/ASHPs, roof-top PV panels and other low carbon strategies.
 - Achieve below EUI target per building typology or 30-40% reduction over LEED ASHRAE Baseline.
 - Install **roof photovoltaic systems** for all new roof constructions and roof-renovations, where feasible.
 - Provide building-level energy metering of utilities and sub-meter end uses that comprise at least 10% of the project's overall energy use.
 - Integrate BMS with the sub-metering.
 - Complete fundamental and enhanced HVAC and envelope commissioning.

PHASE 1A 0-5 YEARS

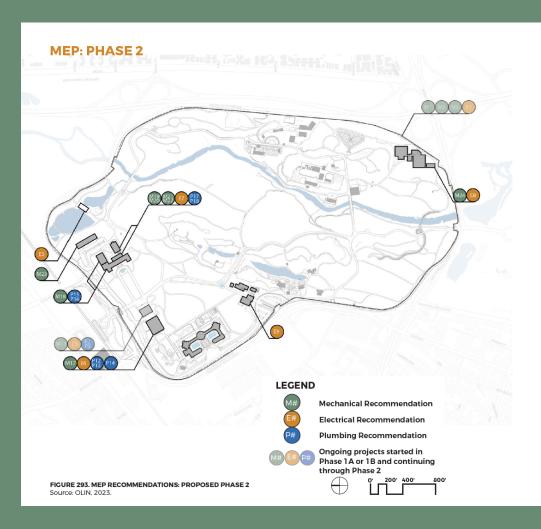

Proposed Campus Design* Proposed Campus Design continues to phase 1b and phase 2*

* Bars symbolize the start of engineering and the end of installation

Various - Mech 1	Garden-w	ide sub meter	ring)
Various - Mech 2	Controls in	nfrastructure e	evaluation)
Various - Mech 3	Campus-v	vide controls i	infrastructure	9)
Various - Elec 1		Photovoltaid	CS							>
Visitor Center - Elec 2	Evaluate r	needs for elect	tric vehicle cl	harging)
IPSC - Mech 4	Replacem	ent of IPSC ch	hillers							
IPSC and Mertz- Mech 5	Geothern	al heat pump	implement	ation						
IPSC and Mertz- Mech 6	Removal	of existing MEI	P plant							
IPSC - Mech 7				VFDs on IP	SC heating h	ot water pu	umps			
Mertz - Mech 8			Mertz comp	olex existing	AHU coil up	grades				
Mertz - Mech 9				Demand c	ontrol ventila	tion imple	mented on a	AHUs		
IPSC and Mertz - Plum 1				Replace er	d of life elec	tric water h	eaters			
Pfizer - Mech 10			Equipment	upgrades						
Mosholu Welcome Center - Mech 11	Ground S	ource Heat Pu	mp Plant)
Mosholu Welcome Center - Elec 3	Electrical	service to new	Welcome C	enter)
Mosholu Welcome Center - Plum 2	Eliminate	direct fired na	atural gas do	mestic wate	r heating					
Mosholu Welcome Center - Plum 3	Low-Flow	Domestic Wa	ter Fixtures 8	Rainwater	Harvesting/Ti	eatment)
Visitor Center- Mech 12		Replace pac	kaged AHUs	with heat p	umps					
Visitor Center- Plum 4				Replace er	id-of-life elec	tric water h	neaters			
	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033

FIGURE 290.MEP RECOMMENDATIONS: PROPOSED PHASE 1A Source: ARUP, 2023.

PHASE IB 5-10 YEARS


Proposed Campus Design*

* Bars symbolize the start of engineering and the end of installation

	100	w 00 (g 0)				
HUGG & GTR - Mech 13	Upgrade per	imeter heat	ing controls			
HUGG & GTR - Mech 14		VFDs on Hu	idson Gardei	n Grill heatin	g hot water p	oumps
HUGG & GTR - Mech 15	Roof and e-v	ent repairs				
IPSC and Mertz - Plum 5	Low-Flow Do	mestic Wate	er Fixtures			
IPSC and Mertz - Plum 6			Eliminate in	ndirect fired	domestic wa	ter heater
Pratt and Watson - Plum 7	Low - Flow D	omestic Wa	ter Fixtures			
Pfizer - Plum 8				Eliminate d	lirect-fired na	atural gas domestic water heating
HOC Headhouse - Plum 9				Eliminate d	lirect-fired na	atural gas domestic water heating
Nolen Greenhouses - Plum 10				Eliminate d	lirect-fired na	atural gas domestic water heating
Eco Machine Building - Mech 16	New HVAC s	ystem for th	e Eco Machii	ne building		
Eco Machine Building - Plum 11	New Domes	tic hot water	system for t	he Eco Mach	nine building	
Eco Machine Building - Elec 4	new Electric	al service for	the Eco Mad	hine buildir	g	
	2029	2030	2031	2032	2033	

FIGURE 292. MEP RECOMMENDATIONS: PROPOSED PHASE 1B Source: ARUP. 2023.

PHASE 2 10+ YEARS

LEGEND

Proposed Campus Design*

* Bars symbolize the start of engineering and the end of installation

Twin Lakes - Elec 5	Electrical In	frastructure t	o support ev	ents at Twin	Lakes							
Mosholu Welcome Center - Mech 17	Hudson Gar	den Grill rede	evelopment									
Mosholu Welcome Center - Elec 6	Upgrade ex	isting electric	al feeders ar	nd equipme	nt							
Mosholu Welcome Center - Plum 12	Rainwater H	Harvesting & T	reatment									
Mosholu Welcome Center - Plum 13	GSHP Dome	estic Water H	eating									
Mosholu Welcome Center - Plum 14	Low Flow D	omestic Wate	er Fixtures									
IPSC and Mertz- Plum 15	Sprinkler/S	tandpipe Sys	tem Redesig	ın								
IPSC and Mertz- Plum 16	Low-Flow D	omestic Wate	er Fixtures									
IPSC and Mertz- Mech 18						Removal of	existing plar	nt left as stan	dby in Phase	e 1		
Pratt and Watson - Mech 19	Envelope U	pgrades										
Pratt and Watson - Elec 7	Replace ma	in electrical f	eeders and	equipment								
Pratt and Watson - Plum 17	Sprinkler/St	andby Systen	n Redesign									
Pratt and Watson - Plum 18	Low Flow D	omestic Wate	er Fixtures									
Pratt and Watson - Mech 20			Replaceme	nt of end-of	life terminal	equipment						
Pratt and Watson - Mech 21			Replaceme	nt of end-of	life terminal	equipment						
Pratt and Watson - Mech 22			Removal of	existing ME	P plant							
Pfizer - Mech 23	Heating/Cod	oling Plant Re	edevelopme	nt								
Nolen Greenhouses - Mech 24	Greenhouse	and office H	VAC upgrad	es								
Nolen Greenhouses - Elec 8	Replace ma	in electrical e	equipment									
Visitor Center - Elec 9	Replace ma	in electrical f	eeders and	equipment								
	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044
FIGURE 294. MEP RECOMMENDATION	IS: PROPOSED	PHASE 2										

FIGURE 294. MEP RECOMMENDATIONS: PROPOSED PHASE Source: ARUP, 2023.

EMBODIED CARBON AND SEQUESTRATION

- Embodied Carbon
 - Existing site paving materials: 7,719,012 kg CO2 eq. (i.e. asphalt, stone, gravel, decking, brick & cobbles, wood fiber and wood mulch)
- Sequestration = Net Positive
 - Existing extensive planting inventory (i.e. significant ground and canopy cover composed of deciduous and coniferous trees, and grasses)
 - Overall net positive with 23,593,565 kg CO2 eq.

RECOMMENDATIONS

- Analyze wood structure for new buildings
- Reduce project embodied carbon by a minimum of 10-20% in structure and enclosure
- 50-60% of new wood by cost to be FSC-certified
- Divert at least 80-95% of construction and demolition waste
- Compost 100% of organic waste and provide sufficient space to do so

SITE OPERATIONS CENTER NET POSITIVE ENERGY

SUSTAINABLE DESIGN FEATURES

TARGET:

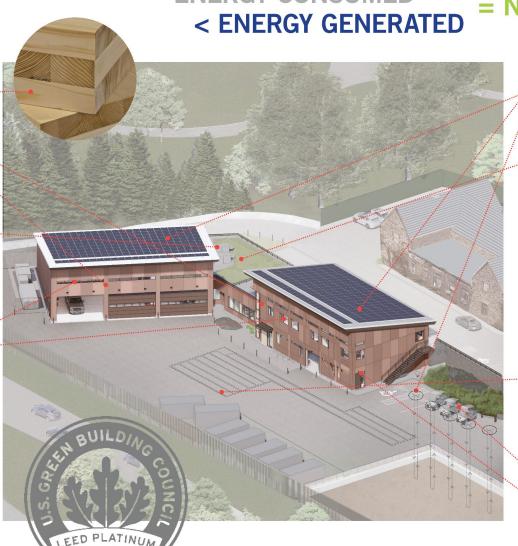
ENERGY CONSUMED

= NET POSITIVE ENERGY

EMBODIED CARBON REDUCTION

MASS TIMBER STRUCTURE UHPC CONCRETE CLADDING

ENERGY EFFICIENCY


GEOTHERMAL HEAT PUMPS
ENERGY RECOVERY VENTILATORS
HIGH PERFORMANCE LED LIGHTING

EXTERIOR ENVELOPE

OPTIMIZED PERFORMANCE GLAZING HIGH INSULATION WALLS & ROOF THERMAL BREAK ASSEMBLIES

INTERIOR STRATEGIES

HEALTHY INTERIOR FINISHES
ENERGY STAR EQUIPMENT

ON-SITE RENEWABLE ENERGY

ROOFTOP SOLAR PANELS
GEOTHERMAL WELL FIELD (x10)

GREEN ROOF

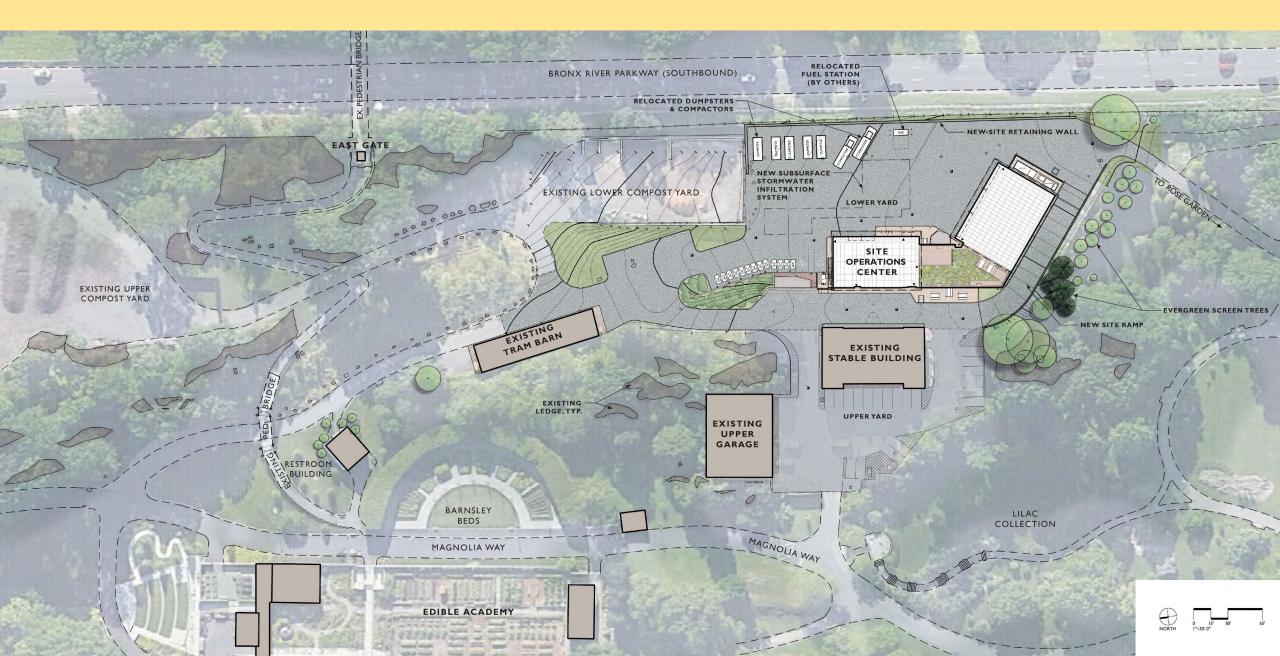
HEAT ISLAND REDUCTION
ESTABLISHMENT IRRIGATION ONLY

DAYLIGHTING

OPTIMIZE NATURAL LIGHT & SHADING

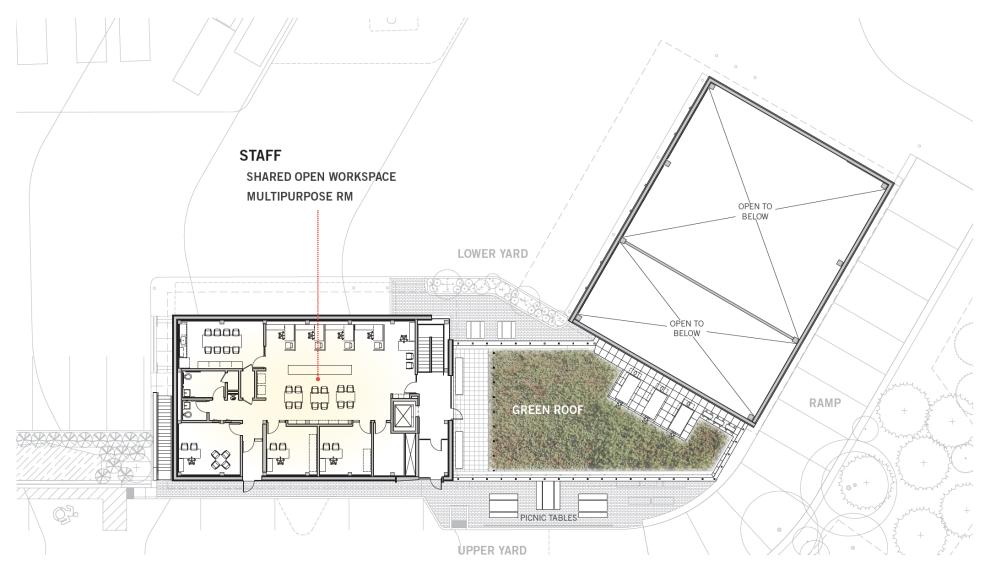
WATER

LOW FLOW FIXTURES
ON-SITE STORMWATER INFRASTRUCTURE

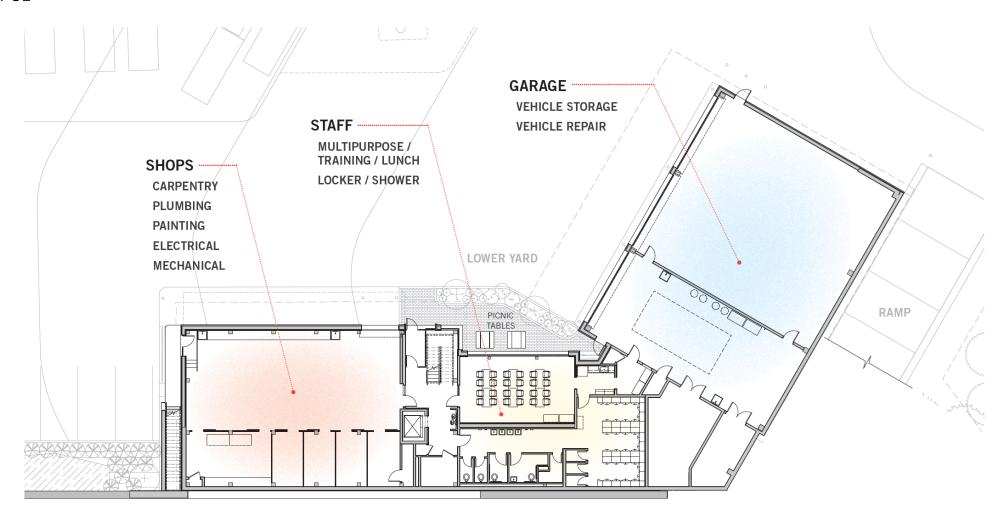

SITE IMPROVEMENTS

NATIVE AND ADAPTIVE PLANTINGS
EV CHARGING STATIONS
DARK SKY COMPLIANT LIGHTING

EXISTING SITE PLAN



PROPOSED SITE PLAN


Floor Plans

Upper Level

Floor Plans

Lower Level

ENERGY EFFICIENCY

- Ground Source Heat Pumps (GSHPs)
 - (7) Water-to-Air Heat Pumps to provide heating and cooling to the conditioned spaces
 - (1) Water-to-Water Heat Pump to provide heating only to the spaces requiring heating only
- Energy Recovery Ventilators (ERVs)
 - (3) 100% Outdoor Air Handling Units with Energy Recovery Ventilators provided to serve the office spaces, locker room and shop areas.
- High Performance LED Lighting

Table 20: Energy and Cost Summary (Proposed Design with PV)

LL31 / LL32 Baseline				LEED Baseline		Proposed Design (with PV)			
LEED Baseline	Electricity	Natural Gas	LEED Baseline	Electricity	Natural Gas	Proposed	Electricity	Natural Gas	
LEED Baseline	kWh	Btu	LEED Baselille	kWh	Btu	Design	kWh	Btu	
Space Cool	9,960	0	Space Cool	17,611	0	Space Cool	2,338	0	
Heat Reject.	53	0	Heat Reject.	0	0	Heat Reject.	0	0	
Refrigeration	0	0	Refrigeration	0	0	Refrigeration	0	0	
Space Heat	40,270	0	Space Heat	26,218	0	Space Heat	5,928	0	
HP Supp.	0	0	HP Supp.	227	0	HP Supp.	2	0	
Hot Water	7,918	0	Hot Water	7,842	0	Hot Water	4,176	0	
Vent. Fans	16,805	0	Vent. Fans	64,209	0	Vent. Fans	14,464	0	
Pumps & Aux.	11,460	0	Pumps & Aux.	2,657	0	Pumps & Aux.	10,764	0	
Ext. Usage	2,070	0	Ext. Usage	3,052	0	Ext. Usage	1,481	0	
Misc. Equip.	48,120	0	Misc. Equip.	48,117	0	Misc. Equip.	22,003	0	
PV Generator	0	0	PV Generator	0	0	PV Generator	1,081	0	
Area Lights	13,848	0	Area Lights	23,405	0	Area Lights	3,782	0	
Total	150,493	0	Total	193,338	0	Total	66,019	0	
Cost (\$)	30,099	0	Cost (\$)	38,667	0	Cost (\$)	13,204	0	
Total Energ	gy (MBTU)	513.6	Total Energy (MBTU)		659.9	Total Energy (MBTU)		225.3	
Total C	ost (\$)	30,099	Total C	Total Cost (\$) 38,667		Total Cost (\$)		13,204	
						Energy Sa	vings (%)	65.9%	
						Cost Sav	ings (%)	65.9%	

Table 21: Energy Demand Summary

LL31 / LL32 Baseline				LEED Baseline		Proposed Design (with PV)			
LEED Baseline	Electricity	Natural Gas	LEED Baseline	Electricity	Natural Gas	Proposed	Electricity	Natural Gas	
LEED Baseline	kW	Btu/h	LEED Baseline	kW	Btu/h	Design	kW	Btu/h	
Space Cool	0.08	0	Space Cool	0.01	0	Space Cool	0.43	0	
Heat Reject.	0.00	0	Heat Reject.	0.00	0	Heat Reject.	0.00	0	
Refrigeration	0.00	0	Refrigeration	0.00	0	Refrigeration	0.00	0	
Space Heat	109.14	0	Space Heat	52.69	0	Space Heat	12.81	0	
HP Supp.	0.25	0	HP Supp.	41.49	0	HP Supp.	0.00	0	
Hot Water	0.69	0	Hot Water	0.69	0	Hot Water	1.86	0	
Vent. Fans	4.45	0	Vent. Fans	20.57	0	Vent. Fans	14.84	0	
Pumps & Aux.	1.98	0	Pumps & Aux.	0.00	0	Pumps & Aux.	9.33	0	
Ext. Usage	0.47	0	Ext. Usage	0.70	0	Ext. Usage	0.00	0	
Misc. Equip.	6.14	0	Misc. Equip.	6.14	0	Misc. Equip.	13.68	0	
PV Generator	0.00	0	PV Generator	0.00	0	PV Generator	0.00	0	
Area Lights	3.37	0	Area Lights	4.86	0	Area Lights	2.21	0	
Total	126.56	0	Total	127.16	0	Total	55.16	0	

EXTERIOR ENVELOPE

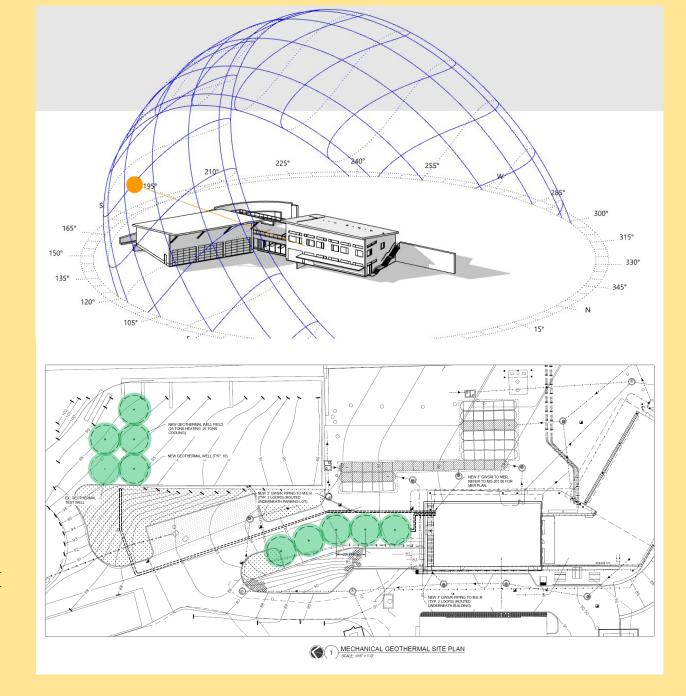
Optimized Performance Glazing

- Optimized daylighting strategies
- Steel rib garage doors having R-7.35 (U-0.14)
- Triple-glazed UPVC windows having R-5.88 (U-0.17)

High Insulation Roof

• Prefabricated wood framed ventilated roof w/ dense pack fiberglass (14.5" R-4.2/inch = R-61)

High Insulation Walls


• Prefabricated wood framed and sheathed perimeter walls with dense pack fiberglass (9.5" R-4.2/inch = R-40)

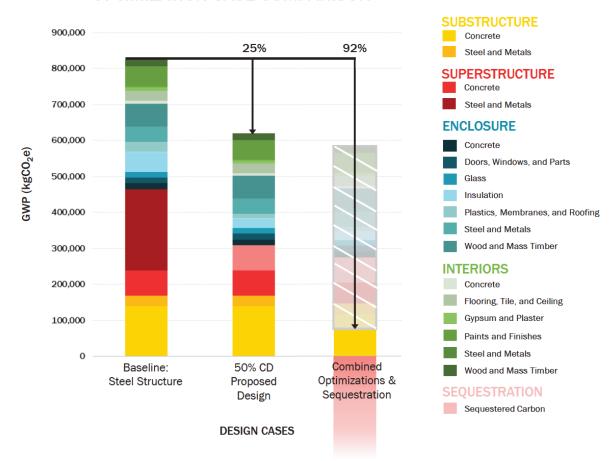
ON-SITE RENEWABLE ENERGY

- 351 Rooftop Solar Photovoltaic Panels
 - Proposed Design Electricity Use: 130,721 kWh/yr
 - Proposed PV Array Output: 149,223 kWh/yr
 - Net Positive Energy Output: 18,502 kWh/yr
 - Energy Cost Savings: \$29,845 / yr
- 10 Geothermal Wells
 - Closed Loop Geothermal Wells approx. 500 ft deep
 - Total Cooling Capacity is estimated to be 25 tons
 - Total Heating Capacity is estimated to be 300 MBH

EMBODIED CARBON OPTIMIZATION

Mass Timber Structure

 Replacing the steel structure for mass timber results in a 19% embodied carbon reduction compared to the baseline


Proposed Design

- Ultra-High Performance Concrete (UHPC)
- Owens Corning Formular NGX 250 Insulation
- Hydrotech Liquid Roofing Membrane
- Results in additional 6% embodied carbon reduction compared to baseline

Concrete Optimization

• With the procurement of an optimized concrete mix, the project demonstrates up to a 29% reduction from the baseline

OPTIMIZATION CASE COMPARISON

In addition to the material optimizations, the project demonstrates significant savings due to the **sequestration potential of wood products**, including the timber structure, wood paneling, and interior wood framing.

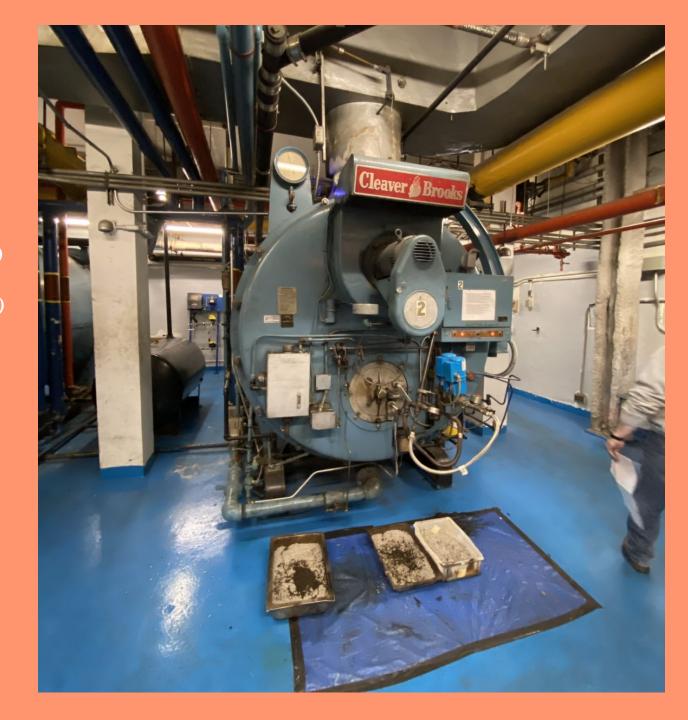
MUSEUM COMPLEX

ROADMAP TO NET ZERO

HYBG

MUSEUM COMPLEX 193,600 NET SF INTERNATIONAL PLANT SCIENCE CENTER (IPSC) WATSON **EDUCATION BUILDING** C. 1998 C. 1972 **PRATT LIBRARY WING** C. 1965 THE ANNEX/SHED **MERTZ BUILDING** C. 1993 (ORIGINAL MUSEUM BUILDING) C. 1899 LANDMARKED

EXISTING CONDITIONS:

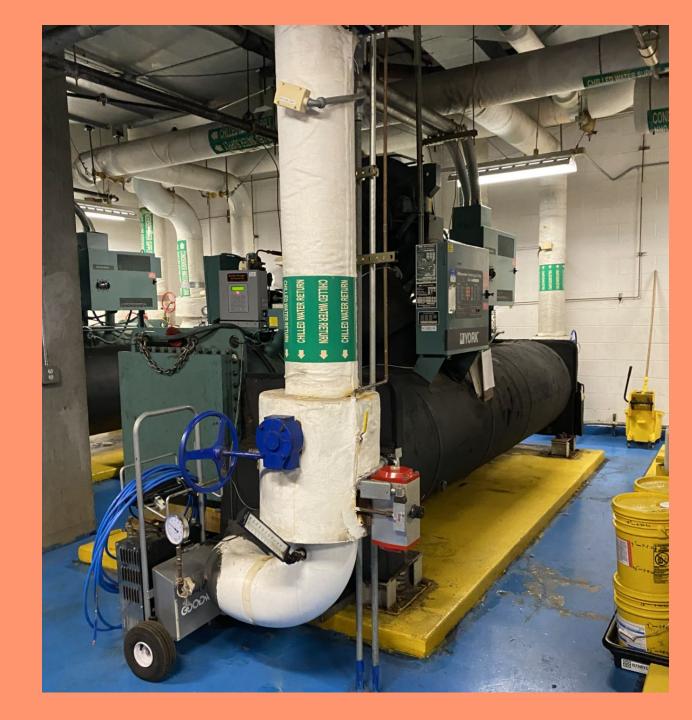

MERTZ BUILDING c. 1889

LANDMARKED

HVAC:

- (2) 300 HP Dual-Fuel Steam Boilers (outlived useful life)
- (1) 100 HP Gas-Fueled Steam Boiler (outlived useful life)
- (37) Air-Handler Units (used for heating only)
- (50+) Window-Mounted Air Conditioning Units cool 80% of the building
- 20% of the building is cooled by IPSC's HVAC

Renewable Energy Systems:


EXISTING CONDITIONS:

IPSC c. 1998

HVAC:

- (2) 300-ton Chillers (outlived useful life)
- (2) 300 BAC Cooling Towers
- Air-Handler Units provide heating, which is supplied by the Mertz Building's Steam Boilers

Renewable Energy Systems:

EXISTING CONDITIONS:

PRATT WING c. 1965

HVAC:

- 75-ton Air-Cooled Chiller located on the roof (outlived useful life)
- (2) Air-Handler Units located in Mech Penthouse (outlived useful life)
- Perimeter Radiant Heaters provide heating via AHUs, which are supplied by the Mertz Building's Steam Boilers

Renewable Energy Systems:

EXISTING CONDITIONS:WATSON BUILDING c. 1972

HVAC:

- (2) Rooftop Air-Handling Units with ducted distribution for cooling only (outlived useful life)
- Perimeter Fan Coil Units provide heating and cooling in each space (outlived useful life)
 - Heating is supplied via hot water from heat exchanger, which is supplied by the Mertz Building's Steam Boilers

Renewable Energy Systems:

ROADMAP TO NET ZERO

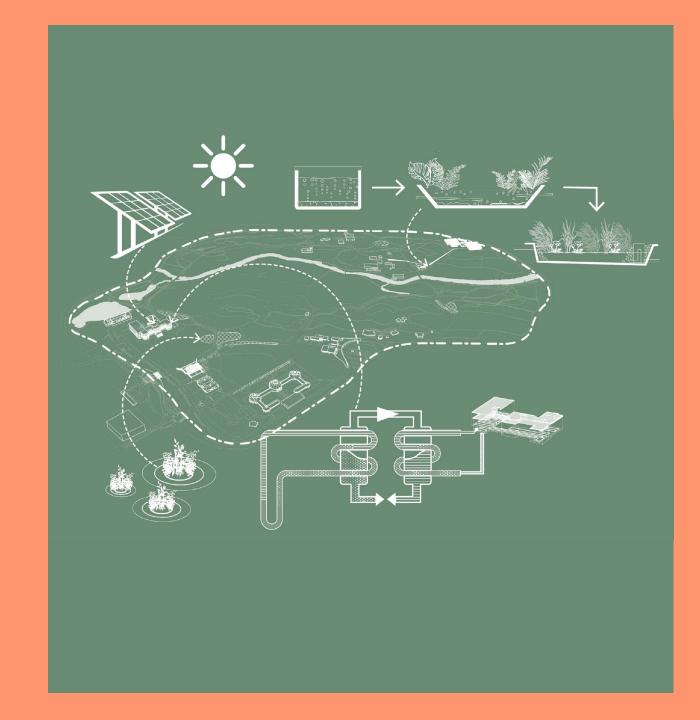
PHASE 1: IN PROGRESS

IPSC Chiller Replacement

PHASE 2: SCHEDULED

IPSC + Mertz Geothermal Project

PHASE 3: FEASIBILITY STUDY

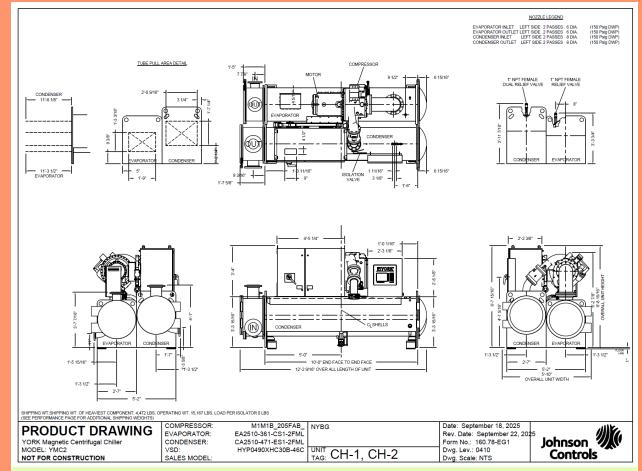

Pratt + Watson Geothermal Project

PHASE 4: PLANNED

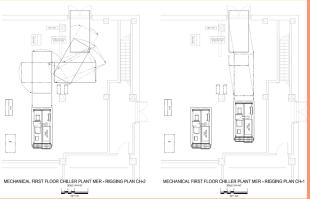
Solar Photovoltaics

OTHER INITIATIVES

Lighting, BMS Upgrades, Sub-Metering, etc.

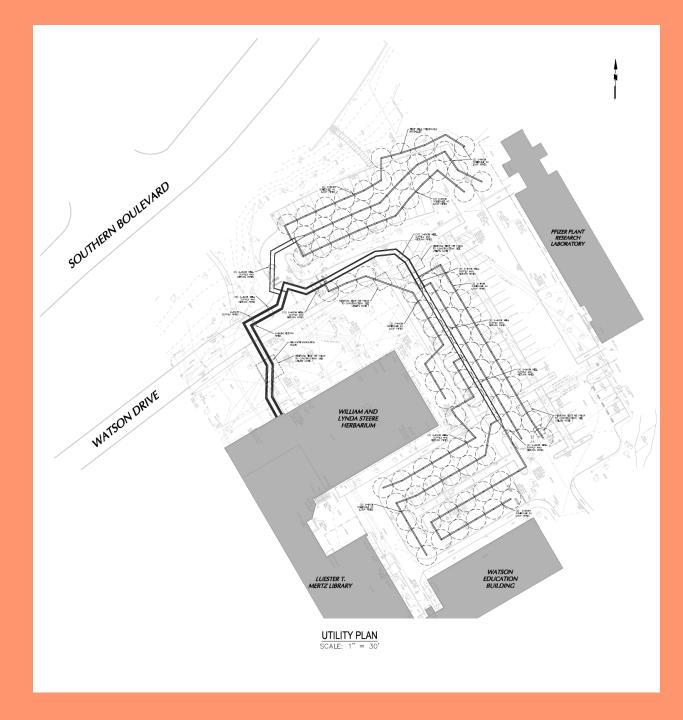

PHASE 1 (IN PROGRESS) REPLACEMENT OF CHILLERS

Scope:


• Replacement of two (2) 300-ton Chillers

Funding:

• NYC Department of Citywide Administrative Services FY26


PHASE 2 GEOTHERMAL: MERTZ + IPSC

Scope:

- Removal of two (2) steam boilers from Mertz Building
- Installation of nine (9) electrified ground source heat pumps
- Installation of 90 geothermal wells (500 ft deep)
- Installation of dual-temp pump system
- Modification of (37) Air-Handling Units (to allow for heating <u>and</u> cooling)
- Removal of 50+ Window-Mounted Air Conditioning Units

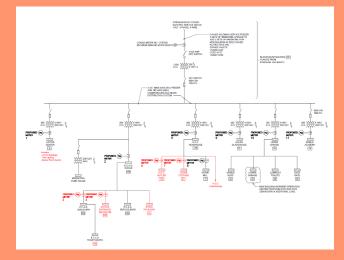
Funding:

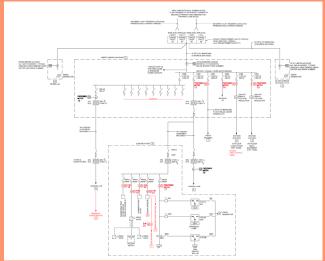
• City (NYC Department of Cultural Affairs) & Private

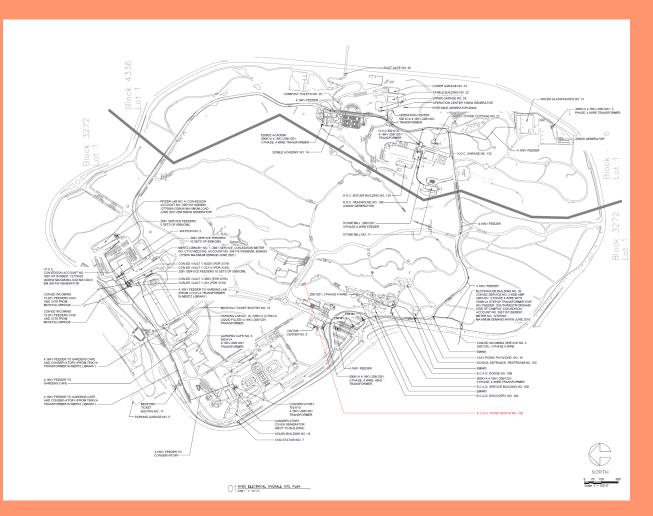
PHASE 3 GEOTHERMAL: PRATT + WATSON

Goal:

- Removal of remaining steam boiler
- Installation of electrified ground source heat pumps supplemented by a geothermal well field


PHASE 4 SOLAR PHOTOVOLTAICS


Goal:


- Roof replacement throughout Museum Complex roofing (outlived useful life)
- Installation of solar photovoltaic panel system, where feasible

OTHER INITIATIVES

- · LIGHTING & CONTROLS
- BMS UPGRADES
- SUB-METERING

HYBG

